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Abstract

Youth experiencing homelessness (YEH) are subject to substantially greater risk of HIV infection,
compounded both by their lack of access to stable housing and the disproportionate representation of
youth of marginalized racial, ethnic, and gender identity groups among YEH. A key goal for health
equity is to improve adoption of protective behaviors in this population. One promising strategy for
intervention is to recruit peer leaders from the population of YEH to promote behaviors such as condom
usage and regular HIV testing to their social contacts. This raises a computational question: which youth
should be selected as peer leaders to maximize the overall impact of the intervention? We developed an
artificial intelligence system to optimize such social network interventions in a community health setting.
We conducted a clinical trial enrolling over 700 YEH at drop-in centers in Los Angeles. The clinical
trial compared interventions planned with the algorithm to those where the highest-degree nodes in the
youths’ social network were recruited as peer leaders (the standard method in public health) and to an
observation-only control group. Results from the clinical trial show that youth in the AI group experience
statistically significant reductions in key risk behaviors for HIV transmission, while those in the other
groups do not. This provides, to our knowledge, the first empirical validation of the usage of AI methods
to optimize social network interventions for health. We conclude by discussing lessons learned over the
course of the project which may inform future attempts to use AI in community-level interventions.

Introduction

Each year, approximately 4.2 million youth in the United States experience some form of homelessness [26].
One of the key health challenges for this population is high HIV prevalence, with reported prevalence in the
range of 2-11% [47], up to 10 times the rate for youth with access to stable housing [11]. Youth experiencing
homelessness (YEH) are a particularly vulnerable population, and these health disparities are compounded
by the overrepresentation among YEH of racial and ethnic minority youth, sexual minority youth, and non-
cisgender youth [26], all groups at greater risk for HIV transmission [35, 30, 34]. Improving the adoption
of protective behaviors to limit HIV transmission among YEH is hence a crucial goal for public health and
health equity.

One proposed mechanism for fostering behavior change in high-risk populations is the peer change agent
model. The main idea is to recruit peer leaders from the population of YEH to serve as advocates for HIV
awareness and prevention. Use of peer leaders has been suggested in the public health and social science
literature due to the central role that peers play in risk behaviors for YEH, including related to HIV spread
[15, 32, 31]. Indeed, peer change agent models have proved successful in past HIV prevention interventions in
other contexts [25]. However, there have also been notable failures [16], and it has been argued that failures
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of the peer change agent model may be attributable to how peer leaders are selected for participation in the
program [36]. The long-standing and most widely adopted method in the public health literature for selecting
peer leaders is to identify the most popular individuals in the social network of the youth [20] (formally, the
highest degree nodes). This poses the question: are high-degree youth the best peer leaders to disseminate
messages about HIV prevention? This question has relevance far beyond HIV prevention; analogous social
network interventions are used widely across applications in development, medicine, education, and more
[22, 28, 2, 38].

Information dissemination on social networks is the focus of a long line of research in the computer science
literature. In particular, the influence maximization problem, formalized by Kempe, Kleinberg, and Tardos
[21], asks how a limited number of seed nodes can be selected from a social network to maximize the extent
of information diffusion. Influence maximization has been the subject of extensive work from the theoretical
computer science and artificial intelligence communities [8, 7, 14, 4, 37]. However, to our knowledge, no work
prior to this project had connected the computational literature on influence maximization to the use of
network-driven interventions in public health and related fields. Computational work has mainly focused
on developing highly efficient algorithms for use on large-scale social media networks (often motivated by
applications on advertising), while interventionists in health domains have not used explicitly algorithmic
approaches to optimize the selection of peer leaders.

This paper reports the results of a project which aims to bridge the gap between computation and health
interventions. As a research team composed of computer scientists and social workers, we developed, imple-
mented, and evaluated an intervention for HIV prevention in YEH where the peer leaders are algorithmically
selected. This intervention was developed over the course of several years, alternating between algorithm de-
sign and smaller-scale pilot tests to evaluate the feasibility of proposed methods. The final system, which
we refer to as CHANGE (CompreHensive Adaptive Network samplinG for social influencE), was evaluated
in a large-scale clinical trial enrolling over 700 youth across two years and three sites. The trial compared
interventions planned with CHANGE to those using the standard public health methodology of selecting
the youth with highest degree centrality (DC), as well as an observation-only control group (OBS). Results
from this clinical trial demonstrate that CHANGE was substantially more effective than the standard DC
method at increasing adoption of behaviors protective against HIV spread. To our knowledge, this is the first
empirically validated success of using AI methods to improve social network interventions for health.

The remainder of the paper is organized as follows. First, we survey related work from both a compu-
tational and application perspective. Second, we introduce a formalization of the problem of selecting peer
leaders from a computational perspective. Third, we briefly review the design of the CHANGE system to
address this problem (deferring most details to earlier technical publications [43, 41, 42]). Fourth, we present
the design of the clinical trial. Fifth, we present and analyze results from the trial. Sixth, we discuss lessons
learned over the course of the project which may help inform future attempts to design and implement
AI-augmented public health interventions.

Related work

A great deal of research in computer science has been devoted to the influence maximization problem. The
majority of this has focused on the development of computationally efficient algorithms for large networks
[8, 7, 14, 4, 37] and assumes that the underlying social network and model of information diffusion are
perfectly known. There is also a more recently developed literature on algorithms to learn or explore these
properties. Predominantly though, such work requires many repeated interactions with the system. For
example, a body of work exists on algorithms to estimate the parameters of an unknown model of information
diffusion [12, 29, 27, 18, 19], but these algorithms typically require the observation of hundreds of cascades
on the same network. Collecting this amount of data is intractable for public health interventions, where a
single round of the intervention takes months to deploy. Another line of work concerns algorithms for the
bandit setting, where the algorithm can repeatedly select sets of nodes and observe the resulting cascade
[40, 9, 39]. Similarly, these algorithms accept poor performance in early rounds as the price for improvement
over the long run, but waiting tens or hundreds of rounds for improved performance is not an option in our
domain. Such techniques are a much better fit for problems concerning online social networks (for example,
in advertising domains) where repeated experiments are possible and large amounts of data can be collected.
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The most closely related related computational work to ours concerns a robust version of the influ-
ence maximization problem [17, 6, 24], building on the earlier work of [23] on general robust submodular
maximization problems. Our algorithm for robust submodular optimization, for which an overview is pro-
vided below, differs from these approaches mainly in that it solves a fractional relaxation of the problem
instead of repeatedly calling a greedy algorithm for discrete submodular optimization, which helps improve
computational performance.

There is a large literature around the use of social network interventions in public health [38, 22], clini-
cal medicine [46], international development [5, 2], education [28], and related domains. Common strategies
involve selecting high degree nodes (as compared to in our trial), selecting nodes at random, or asking
members of the population to nominate others as influencers. The empirical evidence for the relative effec-
tiveness is different strategies is mixed; [22] reports no or marginal improvement for nominations vs random
selections (depending on the outcome measure), while [3] report statistically significant improvements for a
nomination-based selection mechanism over random targeting. [10] introduce improved statistical methods
to compare the effectiveness of seeding strategies by exploiting randomization to develop an off-policy esti-
mator, and conclude that nomination-based strategies do not measurably improve performance. Indeed, [1]
show that in some theoretical network models it may be preferable to invest resources that would have been
spent carefully mapping the network in simply recruiting a slightly larger number of influencers at random.
We contribute to this literature by developing and empirically evaluating an algorithmic framework which
combines both features reminiscent of the nomination-based strategies proposed by others (for gathering
information about network structure) as well as robust optimization techniques for jointly optimizing the
entire set of influencers who are selected (which has not been a feature of previous empirically evaluated
strategies). Our clinical trial demonstrates statistically significant improvements from this strategy compared
to the baseline of selecting high-degree nodes, providing (to our knowledge) the first real-world evidence that
systematic optimization of the selection leads to improved results.

Problem description

The population of youth at whom the intervention is targeted are the nodes of a graph G = (V,E). We
seek to recruit a set of youth S to be peer leaders, where S obeys the budget constraint |S| ≤ k. In
domain terms, the budget constraint reflects the fact that peer leaders given a resource-intensive training and
support process. The objective is to maximize the total expected number of youth who receive information
about HIV prevention, given by the function f(S). Here, f encapsulates the dynamics of a probabilistic
model of information diffusion across the network (specific choices for this model are discussed below).
The optimization problem max|S|≤k f(S) is the subject of the well-known influence maximization problem.
When the objective function f is instantiated using common models for information diffusion, the resulting
optimization problem is submodular (i.e., there are diminishing returns to selecting additional peer leaders).
While finding an optimal solution is NP-hard, a (1− 1/e)-approximation can be obtained via a simple greedy
algorithm [21].

The most common choice for the model of information diffusion is the independent cascade model. In
this model, when a node receives information, they transmit the information to each of their neighbors with
probability p. All such events are independent. The process proceeds in discrete time steps where each newly
informed node attempts to inform each of their neighbors, and concludes when there are no new activations.
f(S) calculates the number of nodes who receive information when the nodes S are informed at the start of
the process, in expectation over the randomness in propagation.

The standard formulation for the influence maximization problem concludes at this point. However, in
the process of developing an algorithmic framework applicable to public health contexts, we came across
challenges which must be solved before, during, and after the setting imagined in standard influence maxi-
mization. These challenges opened up new algorithmic questions, addressed in a series of publications in the
AI literature [43, 41, 42]. Here, we detail three steps for deploying an influence maximization intervention in
the field.

First, information about the network structure G must be gathered. Previous work on influence maxi-
mization assumed that the network structure is known in advance. While this assumption may be reasonable
for online communities, our intervention aims to disseminate information through the network consisting of
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real-world interactions between youth at a given center. Moreoever, pilot studies revealed that information
from an online social network (Facebook) was a poor proxy for actual connections at the center – not all youth
used Facebook, and of those who did, many were not friends with the people who they actually reported
interacting with at the center. Instead, network information must be gathered through in-person interviews
with youth where social workers ask youth to list those who they regularly interact with. Collecting data in
this manner is time-consuming and expensive, often requiring a week or more of effort on the part of the
social work team to for a given center. Accordingly, the first stage of the algorithmic problem is to decide
which nodes to query for network information. The algorithm is allowed to make M queries, where each
query reveals the edges associated with the selected node. The queries can be adaptive, in the sense that the
choice of the ith node to be queried can depend on the answers given by nodes 1...i− 1.

Second, this network information is used to select an initial set of peer leaders. This stage more closely
resembles the standard influence maximization problem. However, there is an additional complication that
the propagation probability p is not known. Indeed, there is no data source from which it could be inferred
(as opposed to online platforms where algorithms have been developed to learn from repeated and easily
observable cascades; see related work). Instead, we formulate an uncertainty set U containing a set of possible
values for p which are consistent with prior knowledge (in CHANGE, we took U to be a discretization of the
interval [0,1], reflecting limited prior knowledge). The aim is to find a set S which performs near-optimally
for every scenario contained in U . Formally, this corresponds to the robust optimization problem

max
|S|≤k

min
p∈U

f(S, p)

OPT (p)

where OPT (p) denotes max|S|≤k f(S, p), i.e., the best achievable objective value if the propagation prob-
ability p were known. Normalizing by OPT (p) encourages the algorithm to find a set S which simultaneously
well-approximates the optimal value for each p ∈ U and avoids the trivial solution where solution to the inner
min problem is always the smallest possible value of p. Note that since OPT (p) is constant with respect to S,
f(S,p)
OPT (p) remains submodular with respect to S. Robust optimization of submodular functions is substantially

more difficult than optimization of a single submodular function; in fact, it is provably inapproximable in
general [23] and the aim is instead to approximate a tractable relaxation of the problem.

Third, after an initial set of peer leaders S is identified, recruitment proceeds in an adaptive manner.
Not all youth invited to become peer leaders will actually attend the training session. A number of potential
barriers exist, e.g., a given youth could have been arrested or not have had enough money for a bus ticket.
Formally, we model that each youth who is invited will actually attend the intervention with probability q
(based on experience in the pilot studies, we took q = 0.5), where the attendence of each youth is independent
of the others. For a given value of p, the resulting objective function is f(S, p, q), which takes an expectation
over both the randomness in which nodes are successfully influenced at the start of the process and in the
subsequent diffusion. It is easy to show [43] that f remains submodular with this additional randomness.
Because of this variation in attendance, as well as capacity limits for the initial training, peer leaders are
recruited over multiple rounds, where the peer leaders selected in round t can depend on those who were
successfully recruited in rounds 1...t−1. In each round t, we select a set of peer leaders St with |St| ≤ kt and
observe which nodes are successfully recruited as peer leaders. The process continues for T rounds in total.

System design

Our final proposed system for intervention planning is called CHANGE. CHANGE was originally introduced
in [43]. The final version of CHANGE summarized here is nearly the same as the original, with the exception
of the algorithm used for robust optimization, which was separately developed and published in [41]. We now
provide an overview of the main components of CHANGE, mirroring the steps of the problem formulation
in the previous section.

Network sampling CHANGE uses a simple but well-motivated heuristic to select a subset of nodes to
be queried for network information (in the discussion section, we briefly review our earlier work on a more
theoretically sophisticated solution, and the rationale for choosing a simpler method). The chosen method
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splits the query budget M into two halves. Each query in the first half is made to a node selected uniformly
at random from the network. Each query in the second half follows a query in the first half, and selects
a uniformly random neighbor of the first node. This design is motivated by the friendship paradox, the
observation that high-degree nodes are overrepresented when we sample random neighbors [13]. Hence, the
two stages of the query process balance between competing objectives: the first step encourages diversity,
since random sampling ensures that we cover many different parts of the network, while the second step
tends towards high-degree nodes who can reveal a great deal of network information.

Robust optimization We now provide an overview of how CHANGE handles parameter uncertainty
within a single stage of the planning process, before considering the multi-stage problem (with uncertain
attendance) below. As mentioned above, max-min submodular optimization is NP-hard to approximate
(within any nonzero factor) [23]. Accordingly, we need to somehow relax the problem to obtain meaningful
guarantees. Let I denote the set of all feasible solutions (sets S where |S| ≤ k) and ∆(I) be the set of all
distributions over I (i.e., the |I|-dimensional simplex). We developed an algorithm for the problem

max
D∈∆(I)

min
p∈U

E
S∼D

[
f(S, p)

OPT (p)

]
(1)

which allows the algorithm to select a distribution over feasible sets and evaluates the worst case only in
expectation over this distribution. In game theoretic terms, this allows the algorithm to select a mixed strat-
egy instead of a pure strategy. At run-time, we sample from D; the resulting set has guaranteed performance
in expectation over the sampling, but strong guarantees cannot be obtained ex-post for the sampled set (as
a result of the computational hardness of the original max-min problem). However, in practice we find that
sampling several random sets and selecting the best one gives excellent empirical performance (i.e., closely
matching or exceeding the expected value of the distribution).

Our algorithm for this problem, detailed in [41], uses a compact representation of the space of distri-
butions (keeping track of only the marginal probability that each node is selected instead of each of the
exponentially many potential subsets). It solves a fractional relaxation of the discrete max-min problem
using this compact representation via a stochastic first-order method which is adapted to the particular
properties of the objective. Then, we can use known rounding algorithms for submodular maximization to
sample random sets from the distribution encoded by the solution to the fractional relaxation. This proce-
dure guarantees a (1 − 1/e)2-approximation for Problem 1, which can be improved to (1 − 1/e) with some
additional steps (which we did not find empirically necessary).

Multi-stage intervention with attendance uncertainty We handle the multi-stage nature of the
intervention by running the robust optimization problem at each stage, calculating the objective function in
expectation over which peer leaders will attend and conditioning on the selection of those who have attended
previous interventions. Formally, this means that at stage t > 1, we solve

max
D∈∆(I)

min
p∈U

E
St∼D

[
f(St ∪ S1 ∪ ... ∪ St−1, p, q)

max|S∗|≤k f(S∗ ∪ S1 ∪ ... ∪ St−1, p, q)

]
where S1...St−1 denote the sets of peer leaders who were succsesfully recruited in each previous stage. It

is easy to show that the inner objective f remains submodular in St (see [43]), and so we retain the earlier
guarantees on the quality of the solution obtained at each individual step. Moreoever, in [43] we show that
the multi-stage problem as a whole enjoys the property of adaptive submodularity, meaning that for any fixed
parameter value p, solving

max
D∈∆(I)

E
St∼D

[
f(St ∪ S1 ∪ ... ∪ St−1, p, q)

max|S∗|≤k f(S∗ ∪ S1 ∪ ... ∪ St−1, p, q)

]
at each step t and selecting the resulting set St enjoys an approximation guarantee relative to the optimal

adaptive policy for selecting a sequence of sets S1...St (again, with respect to a fixed p). More detailed
discussion of the theoretical properties can be found in [43].
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Figure 1: Number of participants recruited and retained in each arm of the study.

Study design

We now move to the empirical portion of the project and provide an overview of the design of the clinical
trial. All study procedures were approved by the University of Southern California Institutional Review
Board. The study was designed to compare the efficacy of two different means of selecting peer leaders: the
CHANGE system described above and the standard DC approach in public health (selecting the highest-
degree youth). We additionally included an observation-only control group (OBS), for three arms in total.
The study was conducted at three drop-in centers for YEH in the Los Angeles area. Drop-in centers provide
basic services to YEH (e.g., food, clothing, case management, mobile HIV testing). Due to high transience
in the YEH population, most clients at a given center are replaced by new youth within approximately six
months. Accordingly, we tested each of the three methods at each of the the three drop-in centers (giving
nine deployments in total, each with a unique set of youth)1, ensuring that successive deployments at a given
drop-in center were separated by six months. Youth were only allowed to enroll in the study once, so even
the small number of youth who were present at the center across multiple deployments were included only
on the first time they attempted to enroll. Testing each method at each drop-in center helps account for
differences in the demographic and other characteristics of youth who tend to access services at each center.

Each of the nine deployments used the following procedure. Figure 1 shows the number of youth recruited
and retained for each phase of the study in each arm.

First, youth were recruited at the drop-in center over the course of a week to participate in the study.
All participants gave informed consent. On enrollment, each participant completed a baseline survey which
assessed demographic characteristics, sexual behaviors, and HIV knowledge. Demographic characteristics
included age, birth sex, gender identity, race/ethnicity, and sexual orientation. Youth were also surveyed for
details of their living situation and relationship status.

Second, peer leaders were selected and trained (for the CHANGE and DC arms of the study). Each indi-
vidual training consisted of approximately 4 youth and there were 3-4 trainings per deployment (depending
on exact attendance at each training). In total, approximately 15% of survey participants in each deploy-
ment were trained as peer leaders. In the CHANGE arm of the study, network information was used from
approximately 20% of the participants (sampled according to the mechanism described above). In the DC
arm, we used a full survey of the network to find high-degree nodes, in order to give the strongest possible
implementation to compare to.

Third, peer leaders had three months to disseminate HIV prevention messages. Peer leaders were sup-
ported via 7 weeks of 30-minute check-in sessions with study researchers, which focused on positive rein-

1Randomizing treatments at an individual level is clearly impossible for an social network intervention, so this is an example
of a quasi-experimental design where entire populations of youth were assigned to one treatment or another.
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forcement of their successes as well as problem-solving strategies and goals for the future. All peer leaders
attended at least one check-in session, with modal attendance at five sessions. Peer leaders received $60 in
compensation for attending the initial training and $20 for each check-in session.

Fourth, follow-up surveys were administered to the original study participants recruited in the first step.
Follow-up surveys assessed the same characteristics as the baseline survey, and differences in reported sexual
behavior and HIV-related knowledge between baseline and follow-up were used as the primary metrics to
evaluate the interventions. All such metrics were self-reported; we followed best practices in social science
research to minimize bias in self-reported data (surveys were self-administered on a tablet and participants
were guaranteed anonymity, each of which aim to reduce social desirability bias in reporting sensitive infor-
mation). Additionally, any bias would be expected to influence each arm of the study equally, including the
observation-only control group.

Details of the peer change intervention have been published in the social work literature [33]. Training was
delivered by two or three facilitators from the social work research team. The primary intervention training
lasted approximately 4 hours (one half-day). Training was interactive and broken into six 45-minute modules
on the mission of peer leaders (sexual health, HIV prevention, communication skills, leadership skills, and
self-care). Peer leaders were asked to promote regular HIV testing and condom use through communication
with their social ties at the drop-in center.

Study results

We now present the results of the clinical trial, starting with an overview of the outcome variables and
methodology for statistical analysis, and then giving an overview of the main results.

Outcome variables

We compared five outcome variables across arms of the study. First, condomless anal sex (CAS). CAS was
assessed via a survey question asking whether youth had anal sex without a condom at least once in the
previous month. Second, condomless vaginal sex (CVS). CVS was assessed via a survey question asking
whether youth had vaginal sex without a condom at least once in the previous month. Third, HIV testing,
assessed via a survey question asking whether youth had taken an HIV test in the previous six months.
Fourth, HIV knowledge, assessed as the percentage of correct answers to a six-item questionaire on HIV
transmission, testing, and prevalence which was incorporated into the survey. Fifth, PrEP awareness. PrEP
(pre-exposure prohylaxis) is a medication which people at high risk of contracting HIV can take to help
avoid becoming infected. Awareness was assessed on a 4-point scale in the survey.

CAS and CVS are the two most important behavioral risk factors for HIV transmission which were
included in the study. Hence, these are the most critical outcome variables to assess the success of intervention.
HIV testing is also included because regular testing helps interrupt transmission chains by allowing people
who know they are infected to adopt protective behaviors for their partners. HIV knowledge and PrEP
awareness measure the contribution of the intervention towards general background knowledge of the youth,
regardless of whether this led to changes in behavior.

Statistical methodology

We provide both the average value of each outcome variable at each time point for the three arms of the
study as well as an analysis of statistical significance. The statistical analysis used a generalized estimating
equations (GEE) model. GEE is an extension of generalized linear models which incorporates repeated
measurements of data across a population. It is a standard choice for analysis of clinical data in this form
[48]. We specified a linear model for each outcome variable which included terms for both the improvement
caused by participating in a given arm of the study (our estimand of interest) as well as terms for a range
of control variables which account for differences in demographics and the baseline rate of risk behaviors in
each arm of the study. The demographic control variables were age, birth sex, transgender identity, LGBQ
identity, the combination of male sex and LGBQ identity, race, committed relationship, housing status,
and drop-in center. We also included a “time” variable to account for changes in the entire population
over time regardless of participation in a particular arm of the study. This combination of control variables
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CAS CVS HIV testing HIV knowledge PrEP knowledge

OR CI OR CI OR CI b SE IRR CI

Baseline

CHANGE 1.43 0.91, 2.28 0.77 0.52, 1.13 1.17 0.75, 1.81 -0.01 0.02 1.49* 1.07, 2.07

DC 1.49 0.89, 2.48 1.07 0.67, 1.68 0.92 0.56, 1.49 -0.03 0.02 0.69† 0.47, 1.021

Post-intervention

CHANGE 0.69* 0.49, 0.98 0.78† 0.57, 1.04 0.81 0.58, 1.12 0.04** 0.01 1.03 0.81, 1.31

DC 0.80 0.55, 1.17 0.88 0.62, 1.23 0.99 0.64, 1.53 0.04** 0.01 1.30† 0.99, 1.72

Time 1.05 0.82, 1.33 0.87 0.71, 1.06 1.34* 1.05, 1.71 0.003 0.01 1.47 1.23, 1.76

Table 1: Results of statistical analysis. Each column gives the effect size and confidence interval for one of
the outcome variables. Each row gives the corresponding estimates for one of the variables included in the
GEE model. The “baseline” category measures pre-existing differences between the groups (relative to the
observation-only group) on enrollment in the study. The “post-intervention” category measures the estimated
impact of participating in each arm of the intervention (relative to the observation-only group, and after
controlling for both demographics and baseline behaviors). “Time” gives the estimated contribution of a
trend over time independent of which arm of the study a participant was enrolled in.
†p < 0.1; ∗p < 0.05; ∗∗p < 0.01
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Figure 2: Average value of each outcome variable at each point in time for the three arms. These plots show
the results without any statistical processing, while the analysis above attempts to control for pre-existing
differences between participants in each arm.

helps separate the impact of the intervention from pre-existing differences between arms of the study and
intervention-independent trends.

The linear model combined contributions from each of these variables through a link function (logistic
for binary outcomes and Poisson for ordinal). For binary outcomes (CAS/CAV/HIV testing), this allows us
to present results in the form of the odds ratio (OR), which measures the ratio in the odds of the outcome in
youth who are exposed to a given intervention vs youth in the observation-only group (after controlling for
demographics and baseline rate of risk behaviors). For PrEP awareness (ordinal), we present the incidence
rate ratio (IRR), which gives the ratio in the estimated Poisson rate between the intervention and observation
groups (again, after controlling for the other variables). For HIV knowledge (a real number), we present the
estimated linear regression coefficient b for participating in the intervention. For all quantities, we also present
95% confidence intervals and indicate where significant p-values are obtained from the GEE model.

Results are known only for youth who completed the follow-up surveys, leading to missing data due to
participant attribution (as is expected for a study enrolling YEH). Of the 713 participants who completed
the baseline survey, 245 (34%) missed the 1-month follow-up, 300 (42%) missed the 3-month follow-up, and
180 (25%) missed both follow-ups. However, missingness was had no statistically significant association with
CAS, CVS, or HIV testing, indicating that youth were not significantly over or under represented in the
follow-up data based on their baseline level of risk behavior.
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Results

We start by presenting the main results of the statistical analysis; the full results can be found in Table 1.

CAS We find that CAS reduced in the CHANGE group over time by a statistically significant amount
(OR = 0.69, p < 0.05). The estimated OR of 0.69 indicates that, in the GEE estimates, a youth who is
enrolled in the CHANGE arm of the study has 31% lower odds to engage in CAS than if they were enrolled
in the observation-only group. For the DC group, there was not a statistically significant change in CAS over
time relative to the observation-only group.

CVS The GEE model estimated that CVS decreased by a marginally statistically significant amount in
the CHANGE group (OR = 0.78, p < 0.1). For the DC group, there was no statistically significant change
in CVS over time relative to the observation-only group.

HIV testing There was no statistically significant change in HIV testing for either the CHANGE or DC
groups relative to the observation-only group. The observation-only group experienced improvements in HIV
testing rates over time, and there is insufficient evidence to conclude that either intervention improved HIV
testing beyond this trend.

HIV knowledge HIV knowledge increased by a statistically significant amount in both the CHANGE
group (b = 0.04, p < 0.01) and DC group (b = 0.04, p < 0.01) relative to the observation-only group.

PrEP knowledge PrEP knowledge increased by a marginally statistically significant amount in the DC
group compared to observation-only (IRR = 1.3, p < 0.1) but not in the CHANGE group. Estimation for this
outcome variable was complicated by the fact that PrEP knowledge was higher by a statistically significant
margin in the CHANGE group at baseline (prior to the intervention) than the observation-only group, and
lower in the DC group by a marginally significant amount.

We conclude from the statistical analysis that both intervention arms (CHANGE and DC) offered im-
provement compared to the observation-only baseline. However, the CHANGE group demonstrated signif-
icantly greater improvement in the most important outcome variables: CAS and CVS. The DC group did
not experience a statistically significant improvement in either of these variables, which were the main HIV-
related risk behaviors assessed in the study. Both interventions demonstrated some level of effectiveness at
improving HIV-related knowledge.

Direct examination of the average values of the outcome variables for each arm at each point in time
(Figure 2) shows another interesting trend. Improvements in the CHANGE group happen faster than the DC
group: most of the improvement for CHANGE in CAS, CVS, and HIV knowledge occur by the one-month
survey, while improvements in the DC group are not fully realized until the three-month survey. Fast results
are especially important in this domain for two reasons. First, rapid adoption of protective behaviors helps
to immediately curtail transmission in a high-risk population. Second, high transience among YEH means
that a non-negligible portion of youth will have left the center by the time a three-month intervention is
completed. We conclude that the AI-augmented intervention implemented with CHANGE has substantial
advantages over an intervention where peer leaders are selected with the standard DC method.

Discussion

This project provides evidence that AI methods can be used to improve the effectiveness of social network
interventions in public health: significant reductions in HIV risk behaviors were observed in groups where
our CHANGE method was used to plan the intervention, with no significant changes in behavior when the
status quo method (selecting high degree nodes) was employed. More broadly, we hope that our experiences
over the course of the project can provide generalizable lessons about how AI research can be successfully
employed for social good, particularly in the context of community-level interventions. There are four points
which we highlight here.
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First, data was overwhelmingly the bottleneck to the AI component of the intervention. Computational
work on influence maximization to date had largely assumed a great deal of information would be known
– the structure of the graph, the model for information diffusion, etc. None of this information was in fact
available for YEH (or would likely be available in other public health settings). Moreoever, gathering this
data is itself time-consuming and costly, requiring unsustainable effort on the part of an agency wishing to
deploy the intervention on their own. Much of the technical focus of the research consisted of finding ways
to reduce the amount of data which needed to be gathered for the intervention to succeed. Finding ways
to reduce or eliminate data needs through improved algorithm design is an important part of producing
deployable AI interventions in a community health context.

Second, simplicity is valuable. As an example, prior to developing CHANGE, we designed a much more
theoretically sophisticated algorithm for collecting network data which enjoyed provable guarantees for cer-
tain families of graphs [42]. However, it quickly became apparent that this algorithm would be difficult to
deploy in practice because it required a large number of sequential queries (the node which is queried on
step 1 determines the node who is to be queried on step 2, and so on). This was impractical in the context
of a program working with YEH where any given youth may be difficult to find, interrupting the entire
process. More generally, if the algorithm requires tight coupling with the outside world (many steps where
information is input, the algorithm recommends an action, more information is input to produce the next
action, and so on) then there are more things that can go wrong outside of the simplified version of the world
which is captured in the computational formalization of the problem.

Third, smaller pilot tests were a valuable part of the project prior to embarking on a larger clinical trial.
We conducted several such tests, each of which consisted of a deployment at a single drop-in center, in
order to test earlier versions of our system [43, 44, 45]. This helped reveal key issues which needed to be
addressed. For example, we quickly discovered that a plan to collect network information via Facebook was
not viable with this population and that manual collection of network data entailed a great deal of effort. We
also quickly observed that peer leaders often did not attend the training, requiring on-the-fly adjustments
over the course of the program. Addressing such issues was necessary to the success of the overall project
(and turned out to provide much of the technical challenge involved). It would have been very difficult to
identify these challenges without piloting algorithms in the actual environment where they will be used. It
was also helpful for computer scientists on the research team to be regularly present onsite during the pilot
deployments to learn more about the environment and help coordinate the initial attempts at using the
algorithm.

Fourth, community engagement and trust was essential to the success of the project. Beyond the research
team, a number of stakeholders needed to be involved in the process. For example, we needed buy-in from
each of the drop-in centers to conduct the study at the center, enroll their clients, and use their facilities.
We regularly convened a community advisory board with representatives from each of the drop-in centers
along with members of the research team to provide information about the study progress, explain the
methods being used, and share information which could be helpful to other center activities. Just as critical
as the center leadership though, were the youth themselves. We asked youth to disclose sensitive information,
including their HIV risk behaviors and the names of their social contacts. Especially for the YEH population,
which is less inclined than most to engage with authority figures, building trust is essential. We found two
factors to be especially important in establishing this trust. First, the social work portion of the research
team had deep roots in the community, having regularly conducted studies and offered services at these
drop-in centers for the past ten years. Second, transparency about why information was being collected was
critical. We observed substantially increased willingness to disclose information related to social contacts
when researchers explained how this information would be used in the study (i.e., that a computer program
would be used to select some people as peer leaders for the program based on their contacts) than when such
an explanation was not proactively given. A critical part of the peer change agent model is empowering the
youth themselves to make a difference in their community, and this philosophy extends to the way that AI
should be used in a community setting.

Our hope is that this project provides one example towards a broader research agenda aiming at AI
techniques which can be successfully used to improve health and equity within our communities. A great
deal of work remains. Just within the context of social network intervention, future work should explore
other intervention designs (e.g., interventions which attempt to modify network structure by fostering sup-
portive relationships), methods for further reducing data requirements (e.g., by using administrative data
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to infer social connections), and more deeply investigate the relationship between information diffusion and
behavioral change. However, the results from this clinical trial provide evidence that AI can substantially
improve the quality of services offered to the most vulnerable among us.
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