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ABSTRACT

This paper looks at challenges faced during the ongoing deploy-
ment of HEALER, a POMDP based software agent that recom-
mends sequential intervention plans for use by homeless shelters,
who organize these interventions to raise awareness about HIV
among homeless youth. HEALER'’s sequential plans (built using
knowledge of social networks of homeless youth) choose interven-
tion participants strategically to maximize influence spread, while
reasoning about uncertainties in the network. In order to compute
its plans, HEALER (i) casts this influence maximization problem
as a POMDP and solves it using a novel planner which scales up
to previously unsolvable real-world sizes; (ii) and constructs social
networks of homeless youth at low cost, using a Facebook appli-
cation. HEALER is currently being deployed in the real world in
collaboration with a homeless shelter. Initial feedback from the
shelter officials has been positive but they were surprised by the so-
lutions generated by HEALER as these solutions are very counter-
intuitive. Therefore, there is a need to justifty HEALER’s solutions
in a way that mirrors the officials’ intuition. In this paper, we report
on progress made towards HEALER’s deployment and detail first
steps taken to tackle the issue of explaining HEALER’s solutions.

1. INTRODUCTION

HIV is a huge problem among homeless youth. Past statistics
show that homeless youth are 10X more likely to get infected by
HIV compared to stably housed youth [4]. The primary reason be-
hind this is that homeless youth tend to engage in high HIV risk be-
haviors such as unprotected sex, sharing needles while using drugs,
etc., due to an absence of educated parental figures in their life who
can advise them against such high-risk activities.

Often, homeless youth do not have access to traditional health
care facilities, which makes early detection, treatment and control
of HIV especially challenging among homeless youth populations.
To that end, many homeless shelters provide free HIV testing clin-
ics for homeless youth to promote a habit of getting regular HIV
tests among youth. Despite these facilities, homeless youth do not
get tested regularly as most of them are not aware of basic informa-
tion about how HIV spreads and how can it be treated. Therefore,
getting regular HIV tests is not a pressing concern for them as they
are not aware of the consequences of HIV infection. Thus, there is
an urgent need to raise awareness about basic HIV related informa-
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tion among homeless youth.

To address this need, many homeless shelters conduct “inter-
vention camps" among homeless youth to raise general awareness
about HIV. These intervention camps consist of day/week long ed-
ucational sessions in which youth are provided with resources and
information about HIV prevention and treatment measures [21].
For example, they are provided emergency contact numbers of
newly opened HIV testing centers. Free contraceptives are also
distributed among them. However, financial and manpower con-
straints faced by homeless shelters means that they can only or-
ganize a limited number of intervention camps. Moreover, in each
camp, the shelters can only manage small groups of youth (~3-4) at
a time (as emotional and behavioral problems of youth makes man-
agement of bigger groups difficult). Thus, the shelters prefer a se-
ries of small sized camps organized sequentially [20]. Using these
interventions, the shelter plans to maximize the spread of awareness
(about HIV) among the target population (via word-of-mouth in-
fluence). To achieve this goal, the shelter uses the friendship based
social network of the target population to strategically choose the
participants of their limited intervention camps. Unfortunately, the
shelters’ job is further complicated by a lack of complete knowl-
edge about the social network’s structure [18]. Some friendships in
the network are known with certainty whereas there is uncertainty
about other friendships.

Thus, the shelters face an important challenge: they need a se-
quential plan to choose the participants of their sequentially orga-
nized interventions. This plan must address four key points: (i) it
must deal with network structure uncertainty; (ii) it needs to take
into account new information uncovered during the interventions,
which reduces the uncertainty in our understanding of the network;
(iii) the plan needs to be deviation tolerant, as sometimes homeless
youth may refuse to be an intervention participant, thereby forcing
the shelter to modify its plan; (iv) the intervention approach should
address the challenge of gathering information about social net-
works of homeless youth, which usually costs thousands of dollars
and many months of time [20].

In previous work, the authors presented HEALER [29], an adap-
tive software agent for solving this problem faced by homeless
shelters. HEALER casts this problem as a Partially Observable
Markov Decision Process (POMDP) and solves it using HEAL, a
novel POMDP planner which quickly generates high-quality rec-
ommendations (of intervention participants) for homeless shelter
officials. Our results from the previous paper show that HEALER
significantly outperforms state-of-the-art techniques in terms of in-
fluence spread achieved.

HEALER is currently being deployed in a real-world pilot study,



in collaboration with Safe Place for Youth', a homeless shelter
which provides food and lodging to homeless youth aged 12-25.
They provide these facilities for ~55-60 homeless youth every day.
They also operate an on-site medical clinic where free HIV and
Hepatitis-C testing is provided. HEALER was reviewed by offi-
cials at Safe Place for Youth and their feedback has mostly been
positive. In this paper, we report on preliminary progress made in
the deployment of HEALER in our pilot study.

Figure 1: Computers at Safe Place for Youth where HEALER is
deployed

Figure 3: Enrolling homeless youth into pilot study at Safe Place
for Youth

However, despite the shelter officials liking HEALER, and al-
lowing us to conduct this pilot study with their youth, the shel-
ter officials were surprised by HEALER’s solutions. This is be-
cause HEALER’s solutions maximize expected utilities (as ex-
plained later), while the homeless shelter officials pick youth for
interventions based on their popularity in the network. To that end,
we aim to develop a POMDP explanation system, which will justify

"http://safeplaceforyouth.org

HEALER’s solutions to the officials in an intuitive manner. In this
paper, we explain first steps taken towards building this POMDP
explanation system.

2. RELATED WORK

First, we discuss work related to influence maximization. There
are many algorithms for finding ‘seed sets’ of nodes to maximize
influence spread in networks [9, 13, 1, 27]. However, all these al-
gorithms assume no uncertainty in the network structure and select
a single seed set. In contrast, HEALER selects several seed sets se-
quentially to select intervention participants. Also, HEALER takes
into account uncertainty about the network structure and influence
status of network nodes (i.e., whether a node is influenced or not).
Finally, unlike [9, 13, 1, 27], we use a different diffusion model as
we explain later. Golovin et. al. [7] introduced adaptive submod-
ularity and discussed adaptive sequential selection (similar to our
problem), and they proved that a Greedy algorithm has a (1 —1/e)
approximation guarantee. However, unlike our work, they assume
no uncertainty in network structure. Also, while our problem can be
cast into the adaptive stochastic optimization framework of [7], our
influence function is not adaptive submodular, because of which
their Greedy algorithm loses its approximation guarantees [29].
This loss of adaptive submodularity is partly due to the feedback
structure that our real world domain imposes on us.

Next, we discuss literature from social work. The general ap-
proach to these interventions is to use Peer Change Agents (PCA)
(i.e., peers who bring about change in attitudes) to engage homeless
youth in interventions, but most studies don’t use network charac-
teristics to choose these PCAs [23]. A notable exception is Valente
et. al. [28], who proposed selecting intervention participants with
highest degree centrality (the most ties to other homeless youth).
However, previous studies [2, 30] show that degree centrality per-
forms poorly, as it does not account for potential overlaps in influ-
ence of two high degree centrality nodes.

Another field of related work is planning for reward/cost opti-
mization. In POMDP literature, a lot of work has been done on
offline planning; some notable offline planners include GAPMIN
[16] and Symbolic Perseus [26]. However, since online planners
scale up much better [15],we only focus on the literature on Monte-
Carlo (MC) sampling based online POMDP solvers since this ap-
proach allows significant scale-up [22]. A recent paper [30] intro-
duced PSINET-W, a MC sampling based online POMDP planner.
As we show later, HEALER scales up whereas PSINET fails to do
so. HEALER’s algorithmic approach also offers significant novel-
ties in comparison with PSINET. A recent paper [14] looks at the
case that not all nodes in the network are known ahead of time (as
opposed to our work where we only assume that some edges are
not known ahead of time). However, unlike HEALER, they do not
consider sequential selection of node subsets.

The final field of related work is on explanation systems for
POMDPs. Khan et. al. [10] came up with template based ex-
planation system and introduced the notions of minimal sufficient
explanations. Also, Seegebarth et. al. [24] presented the hybrid
plan explanation framework. However, most of these approaches
deal with fully observable Markov Decision Processes. We plan on
building on the ideas in these papers to build our POMDP expla-
nation system. Next, we will give a brief overview of HEALER’s
design.

3. HEALER’S DESIGN

We now explain the high-level design of HEALER. It consists
of two major components: (i) a Facebook application for gathering



information about social networks; and (ii) a DIME Solver, which
solves the DIME problem (introduced in Section 5). We first ex-
plain HEALER’s components and then explain HEALER’s design.

Facebook Application: HEALER gathers information about so-
cial ties in the homeless youth social network by interacting with
youth via a Facebook application. We choose Facebook for gath-
ering information as Young et. al. [32] show that ~80% of home-
less youth are active on Facebook. Once a fixed number of home-
less youth register in the Facebook application, HEALER parses
the Facebook contact lists of all the registered homeless youth and
generates the social network between these youth. HEALER adds a
link between two people, if and only if both people are (i) friends on
Facebook; and (ii) are registered in its Facebook application. Un-
fortunately, there is uncertainty in the generated network as friend-
ship links between people who are only friends in real-life (and not
on Facebook) are not captured by HEALER.

Thus, HEALER’s Facebook application assists homeless shel-
ters in quickly generating first approximations of these social ties
at virtually no cost. Previously, homeless shelters gathered this so-
cial network information via tedious face-to-face interviews with
homeless youth, a process which cost thousands of dollars and
many months of time. HEALER’s Facebook application allows
homeless shelters to quickly generate a (partial) homeless youth
social network at low cost. This Facebook application has been
tested rigorously by our collaborating homeless shelter with posi-
tive feedback and in this paper, we present some initial results using
this Facebook application (see Section 9).

DIME Solver: The DIME Solver then takes the approximate
social network (generated by HEALER’s Facebook application) as
input and solves the DIME problem (formally defined in Section 5)
using HEAL [29]. HEALER provides the solution of this DIME
problem as a series of recommendations (of intervention partici-
pants) to homeless shelter officials.

HEALER Design: HEALER’s design (shown in Figure 4), be-
gins with the Facebook application constructing an uncertain net-
work (as explained above). HEALER has a sense-reason-act cycle;
where it repeats the following process for 7" interventions.

HEALER
\'. s 2
Facebook H DIME Shelter
Application ; ! Solver, Official

Recommend Action

Figure 4: HEALER'’s Design

It reasons about different long-term plans to solve the DIME
problem, it acts by providing DIME’s solution as a recommen-
dation (of intervention participants) to homeless shelter officials.
The officials may choose to not use HEALER’s recommendation
in selecting their intervention’s participants. Upon the interven-
tion’s completion, HEALER senses feedback about the conducted
intervention from the officials. This feedback includes new obser-
vations about the network, e.g., uncertainties in some links may be
resolved as intervention participants are interviewed by the shelter
officials (explained more in Section 5). HEALER uses this feed-
back to update and improve its future recommendations.

4. NETWORK GENERATION

First, we explain our model for influence spread in uncertain so-
cial networks. Then, we describe how HEALER generates a social

network using its’ Facebook application.

4.1 Background

We represent social networks as directed graphs (consisting of
nodes and directed edges) where each node represents a person in
the social network and a directed edge between two nodes A and B
(say) represents that node A considers node B as his/her friend. We
assume directed-ness of edges as sometimes homeless shelters as-
sess that the influence in a friendship is very much uni-directional;
and to account for uni-directional follower links on Facebook. Oth-
erwise friendships are encoded as two uni-directional links. Fur-
ther, even in the case of a bi-directional friendship, the influence
propagation is not symmetric in either direction of the edge and we
account for this by maintaining two uni-directional links (each with
a different propagation probability) for each bi-directional link.

Uncertain Network: The uncertain network is a directed graph
G = (V,E) with |V| = N nodes and |E| = M edges. The
edge set E consists of two disjoint subsets of edges: E. (the set
of certain edges, i.e., friendships which we are certain about) and
E,, (the set of uncertain edges, i.e., friendships which we are un-
certain about). Note that uncertainties about friendships exist be-
cause HEALER’s Facebook application misses out on some links
between people who are friends in real life, but not on Facebook.

To model the uncertainty about missing edges, every uncertain
edge e € E, has an existence probability u(e) associated with
it, which represents the likelihood of “existence" of that uncertain
edge. For example, if there is an uncertain edge (A, B) (i.e., we are
unsure whether node B is node A’s friend), then (A, B) = 0.75
implies that B is A’s friend with a 0.75 chance. In addition, each
edge e € E (both certain and uncertain) has a propagation proba-
bility p(e) associated with it. A propagation probability of 0.5 on
directed edge (A, B) denotes that if node A is influenced (i.e., has
information about HIV prevention), it influences node B (i.e., gives
information to node B) with a 0.5 probability in each subsequent
time step (our full influence model is defined below). This graph G
with all relevant p(e) and u(e) values represents an uncertain net-
work and serves as an input to the DIME problem. Figure 5 shows
an uncertain network on 6 nodes (A to F) and 7 edges. The dashed
and solid edges represent uncertain (edge numbers 1, 4, 5 and 7)
and certain (edge numbers 2, 3 and 6) edges, respectively. Next,
we explain the influence diffusion model that we use in HEALER.

Figure 5: Uncertain Network

Influence Model We use a variant of the independent cascade
model [31]. In the standard independent cascade model, all nodes
that get influenced at round ¢ get a single chance to influence their
un-influenced neighbors at time ¢+ 1. If they fail to spread influence
in this single chance, they don’t spread influence to their neighbors
in future rounds. Our model is different in that we assume that
nodes get multiple chances to influence their un-influenced neigh-
bors. If they succeed in influencing a neighbor at a given time
step t’, they stop influencing that neighbor for all future time steps.
Otherwise, if they fail in step ¢/, they try to influence again in the



next round. This variant of independent cascade has been shown to
empirically provide a better approximation to real influence spread
than the standard independent cascade model [3, 31]. Further, we
assume that nodes that get influenced at a certain time step remain
influenced for all future time steps. We now explain how HEALER
generates an uncertain social network.

4.2 HEALER’s Facebook application

HEALER generates an uncertain network by (i) using its Face-
book application to generate a network with no uncertain edges; (ii)
using well known link prediction techniques such as KronEM [11]
to infer existence probabilities u(e) for all possible missing edges
that are not present in the network; (iii) deciding on a threshold
probability 7 (in consultation with homeless shelter officials), so
that we only add a missing edge as an uncertain edge if its inferred
existence probability u(e) > 7; and (iv) asking homeless shelter
officials to provide p(e) estimates for network edges.

Choosing 7: Rice et. al [19] show that real-world homeless
youth networks are relatively sparse. Thus, shelter officials choose
the threshold probability value 7 such that the number of uncertain
edges that get added because of T does not make our input uncertain
network overly dense. Next, we introduce the DIME problem.

5. DIME PROBLEM

We now provide some background information that helps us de-
fine a precise problem statement for DIME. After that, we will
show some hardness results about this problem statement.

Given the uncertain network as input, HEALER runs for T’
rounds (corresponding to the number of interventions organized by
the homeless shelter). In each round, HEALER chooses K nodes
(youth) as intervention participants. These participants are assumed
to be influenced post-intervention with certainty. Upon influencing
the chosen nodes, HEALER ‘observes’ the true state of the uncer-
tain edges (friendships) out-going from the selected nodes. This
translates to asking intervention participants about their 1-hop so-
cial circles, which is within the homeless shelter’s capabilities [19].

After each round, influence spreads in the network according to
our influence model for L time steps, before we begin the next
round. This L represents the time duration in between two succes-
sive intervention camps. In between rounds, HEALER does not ob-
serve the nodes that get influenced during L time steps. HEALER
only knows that explicitly chosen nodes (our intervention partici-
pants in all past rounds) are influenced. Informally then, given an
uncertain network Go = (V, E) and integers 7', K, and L (as de-
fined above), HEALER finds an online policy for choosing exactly
K nodes for T successive rounds (interventions) which maximizes
influence spread in the network at the end of 7" rounds.

We now provide notation for defining HEALER’s policy for-
mally. Let A = {A C Vs.t. |[A] = K} denote the set of K
sized subsets of V', which represents the set of possible choices
that HEALER can make at every time step ¢ € [1,7]. Let A; €
AVi € [1,T] denote HEALER’s choice in the 3*" time step. Upon
making choice A;, HEALER ‘observes’ uncertain edges adjacent
to nodes in A;, which updates its understanding of the network. Let
G; Vi € [1,T] denote the uncertain network resulting from G;_
with observed (additional edge) information from A;. Formally,
we define a history H; Vi € [1,T] of length 4 as a tuple of past
choices and observations H; = (Go, A1,G1, A2, .., Ai—1,G;).
Denote by H; = {Hp s.t. k < i} the set of all possible histories
of length less than or equal to 7. Finally, we define an i-step policy
II;: #; — A as a function that takes in histories of length less
than or equal to ¢ and outputs a K node choice for the current time
step. We now provide an explicit problem statement for DIME.

PROBLEM 1. DIME Problem Given as input an uncertain net-
work Go = (V, E) and integers T, K, and L (as defined above).
Denote by R(Hr, Ar) the expected total number of influenced
nodes at the end of round T, given the T'-length history of previ-
ous observations and actions Hr, along with Ar, the action cho-
sen at time T. Let Ex, Ap~tip [R(Hr, Ar)] denote the expec-
tation over the random variables Hr = (Go, A1, .., Ar_1,Gr)
and Ar, where A; are chosen according to Ilr(H;)Vi €
[I,T], and G, are drawn according to the distribution over
uncertain edges of Gi—_1 that are revealed by A;. The ob-
jective of DIME is to find an optimal T-step policy Il =
argmaxyy, Er,, ap~my [R(Hr, Ar)).

6. DIME POMDP FORMULATION

DIME is modeled as a POMDP [17] (similar to [29]) because
of two reasons. First, POMDPs are a good fit for DIME as (i)
we conduct several interventions sequentially, similar to sequential
POMDP actions; and (ii) we have partial observability (similar to
POMDPs) due to uncertainties in network structure and influence
status of nodes. Second, POMDP solvers have recently shown great
promise in generating near-optimal policies efficiently [25]. We
now explain how we map DIME onto a POMDP.

A POMDRP is a tuple p = (S, A, O, 8o, T, 2, R), where S, A
and O are sets of possible world states, actions and observations
respectively; [o is the initial belief state (distribution over states);
R(s,a,s’) is the reward of taking action a in state s and reaching
state s’; T(s’|s, a) is the transition probability of reaching s’ by
taking action a in s; £2(ola,s’) is the observation probability of
observing o, by taking action a to reach s’. We now explain how
we map DIME onto a POMDP.

6.1 States

A POMDRP state in our problem is a pair of binary tuples s =
(W, F) where W and F are of lengths |V| and | Es|, respectively.
Intuitively, W denotes the influence status of network nodes, where
W; = 1 denotes that node 7 is influenced and W; = 0 otherwise.
Moreover, F' denotes the existence of uncertain edges, where F; =
1 denotes that the i*" uncertain edge exists in reality, and F; =
0 otherwise (assuming we order the nodes and uncertain edges).
For example, in Figure 5, if only node A is influenced, and only
uncertain edge (A, B) exists, then the POMDP state s = (W, F') is
given by W = (1,0, 0,0, 0,0), because only node A is influenced
(i.e, W1 = 1) and all other nodes are un-influenced (i.e, W; = 0);
and F' = (1,0,0,0) because out of the four uncertain edges in
Figure 5, only (A, B) exists (F1 = 1) and the other uncertain edges
don’t exist (/3 = 0). Thus, the set of all possible POMDP states
are all possible combinations of the binary vectors W and F'. We
denote the set of all possible POMDP states by S.

6.2 Actions

Every choice of a subset of K nodes is a POMDP action. More
formally, A = {a C Vs.t.la] = K}. For example, in Figure 5,
one possible action is { A, B} (when K = 2). We denote the set of
all possible POMDP actions by A.

6.3 Observations

Upon taking a POMDP action, we “observe" the ground reality
of the uncertain edges outgoing from the nodes chosen in that ac-
tion. Consider ©(a) = {e|e=(x,y)st.x €a A e € Ey}Va €
A, which represents the (ordered) set of uncertain edges that are
observed when we take action a. Then, our POMDP observation
upon taking action a is defined as o(a) = {F.|e € ©(a)}, i.e., the
F-values of the observed uncertain edges. For example, by taking



action {B, C'} in Figure 5, the values of Fy and Fs (i.e., the F-
values of uncertain edges in the 1-hop social circle of nodes B and
C) would be observed. We denote the set of all possible POMDP
observations by O.

6.4 Rewards

The reward R(s, a, s") of taking action « in state s and reaching
state s’ is the number of newly influenced nodes in s’. More for-
mally, R(s,a,s") = (||s'|| — ||s||), where ||s’|| is the number of
influenced nodes in s’.

6.5 Initial Belief State

The initial belief state is a distribution 5y over all states s € S.
The support of 3o consists of all states s = (W, F') st. W, =
0Vi € [1,|V]], ie., all states in which all network nodes are un-
influenced (as we assume that all nodes are un-influenced to begin
with). Inside its support, each F; is distributed independently ac-
cording to P(F; = 1) = wu(e). Recall that despite this assump-
tion, there is uncertainty in the influence status of nodes in future
time steps, because HEALER does not observe the nodes that have
been influenced in between interventions. The only information
HEALER has is that explicitly chosen nodes (i.e., our intervention
participants in all past rounds) are influenced.

6.6 Transition And Observation Probabilities

Computation of exact transition probabilities T'(s’|s, a) requires
considering all possible paths in a graph through which influence
could spread, which is O(N!) (N is number of nodes in the net-
work) in the worst case. Moreover, for large social networks, the
size of the transition and observation probability matrix is pro-
hibitively large (due to exponential sizes of state and action space).

Therefore, instead of storing huge transition/observation ma-
trices in memory, we follow the paradigm of large-scale online
POMDP solvers [25, 6, 5] by using a generative model A(s,a) ~
(s, 0,7) of the transition and observation probabilities. This gen-
erative model allows us to generate on-the-fly samples from the
exact distributions T'(s|s, a) and Q(ola, s') at very low computa-
tional costs. Given an initial state s and an action a to be taken,
our generative model A simulates the random process of influence
spread to generate a random new state s’, an observation o and
the obtained reward r. Simulation of the random process of in-
fluence spread is done by “playing" out propagation probabilities
(i.e., flipping weighted coins with probability p(e)) according to
our influence model to generate sample s’. The observation sam-
ple o is then determined from s’ and a. Finally, the reward sample
r = (||s’|| = ||s|l) (as defined above). This simple design of the
generative model allows significant scale and speed up (as seen in
previous work [25] and also in our experimental results section).

Next, we give a high-level overview of HEAL algorithm. For
more detailed understanding, please refer to [29].

7. HEAL

HEAL solves the original POMDP using a novel hierarchi-
cal ensembling heuristic: it creates ensembles of imperfect (and
smaller) POMDPs at two different layers, in a hierarchical manner
(see Figure 6). HEAL’s top layer creates an ensemble of smaller
sized intermediate POMDPs by subdividing the original uncer-
tain network into several smaller sized partitioned networks by us-
ing graph partitioning techniques [12]. Each of these partitioned
networks is then mapped onto a POMDP, and these intermediate
POMDPs torm our top layer ensemble of POMDP solvers.

In the bottom layer, each intermediate POMDP is solved us-
ing TASP (Tree Aggregation for Sequential Planning), our novel
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Figure 6: Hierarchical decomposition in HEAL

POMDP planner, which subdivides the POMDP into another en-
semble of smaller sized sampled POMDPs. Each member of this
bottom layer ensemble is created by randomly sampling uncertain
edges of the partitioned network to get a sampled network having
no uncertain edges, and this sampled network is then mapped onto
a sampled POMDP. Finally, the solutions of POMDPs in both the
bottom and top layer ensembles are aggregated using novel tech-
niques to get the solution for HEAL’s original POMDP.

HEAL uses several novel heuristics. First, it uses a novel two-
layered hierarchical ensembling heuristic. Second, it uses graph
partitioning techniques to partition the uncertain network, which
generates partitions that minimize the edges going across parti-
tions (while ensuring that partitions have similar sizes). Since these
partitions are “almost" disconnected, we solve each partition sep-
arately. Third, it solves the intermediate POMDP for each par-
tition by creating smaller-sized sampled POMDPs (via sampling
uncertain edges), each of which is solved using a novel tree search
algorithm, which avoids the exponential branching factor seen in
PSINET [30]. Fourth, it uses novel aggregation techniques to com-
bine solutions to these smaller POMDPs rather than simple plural-
ity voting techniques seen in previous ensemble techniques [30].

These heuristics enable scale up to real-world sizes (at the ex-
pense of sacrificing performance guarantees), as instead of solving
one huge problem, we now solve several smaller problems. How-
ever, these heuristics perform very well in practice. Our simulations
show that even on smaller settings, HEAL achieves a 100X speed
up over PSINET, while providing a 70% improvement in solution
quality; and on larger problems, where PSINET is unable to run at
all, HEAL continues to provide high solution quality.

8. EXPERIMENTAL RESULTS

In this section, we analyze HEAL’s performance on some set-
tings. Both our experiments are run on a 2.33 GHz 12-core Intel
machine having 48 GB of RAM. All experiments are averaged over
100 runs. We use a metric of “Indirect Influence" throughout this
section, which is number of nodes “indirectly" influenced by inter-
vention participants. For example, on a 30 node network, by select-
ing 2 nodes each for 10 interventions (horizon), 20 nodes (a lower
bound for any strategy) are influenced with certainty. However, the
total number of influenced nodes might be 26 (say) and thus, the
Indirect Influence is 26 — 20 = 6. In all experiments, the propa-
gation and existence probability values on all network edges were
uniformly set to 0.1 and 0.6, respectively. This was done based
on findings in Kelly et. al.[8]. However, we relax these parameter
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settings later in the section. All experiments are statistically signif-
icant under bootstrap-t (¢ = 0.05). For a more comprehensive set
of results, please refer to [29].

Baselines:  We use two algorithms as baselines. We use
PSINET-W as a benchmark as it is the most relevant previous al-
gorithm, which was shown to outperform heuristics used in prac-
tice; however, we also need a point of comparison when PSINET-
W does not scale. No previous algorithm in the influence maxi-
mization literature accounts for uncertain edges and uncertain net-
work state in solving the problem of sequential selection of nodes;
in-fact we show that even the standard Greedy algorithm [9, 7]
has no approximation guarantees as our problem is not adaptive
submodular. Thus, we modify Greedy by replacing our uncertain
network with a certain network (in which each uncertain edge e
is replaced with a certain edge eg having propagation probability
p(eo) = p(e) x u(e)), and then run the Greedy algorithm on this
certain network. We use the Greedy algorithm as a baseline as it
is the best known algorithm known for influence maximization and
has been analyzed in many previous papers [2, 1, 27, 9, 13, 7].

Datasets: We use four real world social networks of homeless
youth, provided to us by our collaborators. All four networks are
friendship based social networks of homeless youth living in dif-
ferent areas of a big city in USA (name withheld for anonymity).
The first and second networks are of homeless youth living in two
large areas (denoted by VE and HD to preserve anonymity), respec-
tively. These two networks (each having ~150-170 nodes, 400-450
edges) were created through surveys and interviews of homeless
youth (conducted by our collaborators) living in these areas. The
third and fourth networks are relatively small-sized online social
networks of these youth created from their Facebook (34 nodes,
120 edges) and MySpace (107 nodes, 803 edges) contact lists, re-
spectively. When HEALER is deployed, we anticipate even larger
networks, (e.g., 250-300 nodes) than the ones we have in hand and
we also show run-time results on artificial networks of these sizes.

Solution Quality/Runtime Comparison. We compare Indirect
Influence and run-times of HEAL, HEAL-T and PSINET-W on
all four real-world networks. We set 7' = 5 and K = 2 (since
PSINET-W fails to scale up beyond K = 2 as shown later). Fig-
ure 7a shows the Indirect Influence of the different algorithms on
the four networks. The X-axis shows the four networks and the
Y-axis shows the Indirect Influence achieved by the different algo-
rithms. This figure shows that (i) HEAL outperforms all other algo-
rithms on every network; (ii) it achieves ~70% improvement over
PSINET-W in VE and HD networks; (iii) it achieves ~25% im-
provement over HEAL-T. The difference between HEAL and other
algorithms is not significant in the Facebook (FB) and MySpace
(MYS) networks, as HEAL is already influencing almost all nodes
in these two relatively small networks. Thus, in experiments to
come, we focus more on the VE and HD networks.

Figure 7b shows the run-time of all algorithms on the four net-
works. The X-axis shows the four networks and the Y-axis (in log

scale) shows the run-time (in seconds). This figure shows that (i)
HEAL achieves a 100X speed-up over PSINET-W; (ii) PSINET-W’s
run-time increases exponentially with increasing network sizes;
(iii)) HEAL runs 3X slower than HEAL-T but achieves 25% more
Indirect Influence. Hence, HEAL is our algorithm of choice that we
plan to deploy in our pilot study. Next, we report on initial progress
made in the pilot study.

9. PILOT STUDY WITH HOMELESS
YOUTH

We now discuss ongoing efforts towards deploying HEALER in
collaboration with Safe Place for Youth in a pilot study. This study
will serve as a precursor to a much larger study where we plan to
enroll 900 youth into our program. For our pilot study, we have
begun generating the network using HEALER’s Facebook applica-
tion.

So far, we have enrolled 60 homeless youth into our pilot study.
Over a period of two weeks, each youth that visited Safe Place for
Youth was asked about the possibility of them enrolling into our
study. Upon their consent, they were explained the goal and reason
behind conducting this pilot study - to raise awareness about HIV
in their social circles. Each youth was gifted a 20 US dollar gift
card for enrolling into the study. They will also be given 25 and 30
US dollar gift cards for showing up after one and three months for
follow-up interviews which will be used to assess influence spread.
Finally, the youth were also given a three digit personal identifi-
cation number (PID) using which they will be referred to in the
pilot study (as part of an Institutional Review Board requirement to
protect the anonymity of homeless youth at all times).

Using this PID, they logged into HEALER’s Facebook appli-
cation and then the social network was generated. Currently, the
network is in the process of being refined with suggestions made
by officials at Safe Place for Youth. Figure 8 shows a portion of
the raw network generated using HEALER’s Facebook application.
Each node shows the PID of a homeless youth. Note that even
though Facebook friendships are mostly bidirectional, we have re-
placed those bidirectional edges with two unidirectional edges (in
order to account for the asymmetry of influence propagation in ei-
ther direction of most friendships). After this network is refined
with suggestions from officials at Safe Place for Youth, link pre-
diction techniques will be used to infer missing or uncertain edges.
Once this entire process is over, HEALER will be used to generate
recommendations for homeless shelter officials.
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Figure 8: A portion of the raw network generated using HEALER’s
Facebook application



10. EXPLANATION SYSTEM

In our initial talks with homeless shelter officials, we observed
that the shelter officials found HEAL'’s solutions to be very counter-
intuitive. This was to be expected since people generally tend to
perform bad in situations where multi-step expected utility calcula-
tions need to be done in order to find the best action (e.g., sequential
planning problems). Since HEAL will be deployed among home-
less youth whose welfare is the responsibility of the homeless shel-
ter, we want the shelter officials to be comfortable with solutions
provided by HEAL.

Our goal is to be able to justify the solutions of HEAL to the
homeless shelter officials in an intuitive manner. This goal is
slightly different than the goal of “explaining" HEAL’s solution
to the shelter official. Explaining HEAL’s solution would entail
telling the official exactly how HEAL calculates its solution, and
then explain why HEAL chooses a particular choice of nodes in
the network. That is, we would need to give a “correct" explana-
tion to the official which would involve maximum expected utility
calculations. On the other hand, we just want to justify the solu-
tions of HEAL to the official in an intuitive manner. This means
that we want to explain the solution of HEAL in a way that does
not go against the official’s intuition. In such a case, the official
will be much more comfortable in adopting HEAL’s solutions.

One possible way of designing this explanation system is to
ensure that our system refrains from using MEU (maximum ex-
pected utility) calculations to justify HEALER’s solutions. Instead,
it could explain the solution in terms of concepts that the officials
finds believable (or concepts that mirror the officials’ intuition). For
example, the officials might pick nodes which are centrally located
and highly popular in the network. Now, degree centrality is not
necessarily an optimal strategy, but if we can explain HEAL’s so-
lution in terms of “centrality and popularity" of nodes, then the
official might be more willing to agree with the POMDP solution.

To that end, our first goal is to find out what kind of reasoning
do officials (or humans in general) use to pick nodes in very simple
graph settings. That will give us an understanding about what kinds
of reasons are most likely to persuade humans and offials to adopt
HEAL’s solutions. Next, we describe the details of an Amazon
Mechanical Turk (AMT) game that we have developed in order to
find the biases/reasons that humans use to pick nodes.

10.1 Mechanical Turk Game

Our Amazon Mechanical Turk game collects data from human
subjects which will help us understand the reasons using which
people select nodes in networks. Our game is comprised of two
different phases.
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Figure 9: Instructions Page of AMT Game

10.1.1 First Phase of Game

In the first phase, our game collects data from human subjects
by showing them pictures of different graphs and asking them to
pick nodes in those graphs. Our game has four different variants,
each of which is designed to gauge difficulties faced by humans in
different settings. The four settings are as follows:

e Short + Certain: In this setting, subjects are asked to select
two nodes for a single horizon on 8 different graphs with
certain propagation of influence on all edges.

e Short + Uncertain: In this setting, subjects are asked to se-
lect two nodes for a single horizon on 8 different graphs with
uncertain propagation of influence on all edges.

e Long + Certain: In this setting, subjects are asked to select
two nodes for a two rounds on 8 different graphs with certain
propagation of influence on all edges.

e Long + Uncertain: In this setting, subjects are asked to se-
lect two nodes for a two rounds on 8 different graphs with
uncertain propagation of influence on all edges.

Data collected from these four variants will help us understand
where do humans fail. Specifically, it will help us distinguish be-
tween whether humans fail at lookahead search (Long + Certain
and Long + Uncertain) or at expected utility calculations (Short
+ Uncertain). At the beginning of the game, each human subject
is randomly assigned to one out of the four possible game vari-
ants. He/she is shown the first set of graphs and his responses are
recorded.
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Figure 12: Long + Certain Variant
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Figure 13: Long + Uncertain Variant

10.1.2  Second Phase of Game

The second phase of the game collects data on whether people
find it easier to verify correct solutions as opposed to coming up
with correct solutions. Recall that in the first phase of our game,
each human subject was shown a set of eight different networks
and they were asked to select a set of nodes for maximizing in-
fluence spread. In the second phase, for each of these eight net-
works, the human subject is shown four different solutions for that
network. The four different solutions are as follows: (i) his own
solution from Phase 1; (ii) HEALER’s solution; (iii) solution based
on Degree Centrality (i.e., nodes picked in order of decreasing de-
gree centrality); (iv) solution based on Betweenness Centrality (i.e.,
nodes picked in order of decreasing betweenness centrality).

Data collected from the second phase will help us in finding out
if people can verify the correct solutions (i.e., HEALER’s solu-
tions) even though it might be harder for them to come up with
the correct solutions (due to the various difficulties that we test in
the first phase of the game). For example, if we find out that peo-
ple mostly figure out that HEALER’s solutions are better than the
other solutions, then the need for our POMDP explanation system
would be negated. Moreover, if people do not select their own first
phase solution in the second phase, that would point to the fact that
peoples’ biases towards their particular solution are not that strong.

AN
'S ST
PN REFAN

- ®
A S

AN

Figure 14: Second phase of AMT game

Compensation Scheme: Each human subject receives a base
compensation of 50 cents and gets a bonus amount proportional to
his/her performance on the task (the performance is judged by how
close his solution is to the optimal solution). The bonus amount
is capped off at one dollar, i.e., if the subject selects the optimal
solution on each of the eight networks, he/she gets 1.5 dollars (one
dollar bonus + 50 cent base compensation). Data collection using
the game is currently underway?. In future work, we plan to utilize
the collected data to guide the development of our POMDP persua-
sion system.

The game can be played at http://cs-server.usc.edu:16292/

11. CONCLUSION

This paper looks at challenges faced during the ongoing deploy-
ment of HEALER, a POMDP based software agent that recom-
mends sequential intervention plans for use by homeless shelters,
who organize these interventions to raise awareness about HIV
among homeless youth. HEALER’s sequential plans (built using
knowledge of social networks of homeless youth) choose interven-
tion participants strategically to maximize influence spread, while
reasoning about uncertainties in the network. In order to compute
its plans, HEALER (i) casts this influence maximization problem
as a POMDP and solves it using a novel planner which scales up
to previously unsolvable real-world sizes; (ii) and constructs social
networks of homeless youth at low cost, using a Facebook appli-
cation. HEALER is currently being deployed in the real world in
collaboration with a homeless shelter. Initial feedback from the
shelter officials has been positive but they were surprised by the so-
lutions generated by HEALER as these solutions are very counter-
intuitive. Therefore, there is a need to justifty HEALER’s solutions
in a way that mirrors the officials’ intuition. In this paper, we report
on progress made towards HEALER’s deployment and detail first
steps taken to tackle the issue of explaining HEALER’s solutions.
Specifically, we build a game on Amazon Mechanical Turk to col-
lect data from human subjects in order to understand biases and
reasons that humans use to select nodes in networks. This is the
first step towards building our explanation system that will justify
solutions of HEALER to homeless shelter officials in an intuitive
manner.
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